Лантаноиды - Definition. Was ist Лантаноиды
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Лантаноиды - definition

СЕМЕЙСТВО РЕДКОЗЕМЕЛЬНЫХ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, ОБЛАДАЮЩИХ СХОЖИМИ СВОЙСТВАМИ
Лантаноид; Лантаниды
  • noedit}}</ref>.
  • 50px
  • Структура потребления РЗЭ Китаем (1988—2008 гг.)<ref name="mancheri2"/>
  • noedit}}</ref>
  • 50px
  • 50px
  • 50px
  • Экспорт и импорт редкоземельных металлов первыми пятью странами-лидерами (нетто-вес) с 2009 по 2015 гг.
  • 50px
  • Жан Мариньяк]]
  • Разогретая [[калильная сетка]]
  • Жорж Урбэн]]
  • noedit}}</ref>
  • 50px
  • [[Жак-Луи Соре]]
  • Йёнс Берцелиус]]
  • Образцы лантаноидов в виде простых веществ
  • 50px
  • Лекок де Буабодран]]
  • 50px
  • SMD-компоненты]])
  • Сплав гадолиния нагревается в магнитном поле, отдавая тепло в окружающую среду
  • Карл Густав Мосандер]]
  • 50px
  • Оксиды и хлориды лантаноидов. Порошки — оксиды; слитки — хлориды лантаноидов
  • Пер Теодор Клеве]]
  • 50px
  • Древообразная схема открытия редкоземельных элементов (Ln, Sc, Y), в которой показаны 2 ветви открытия элементов: из оксида иттрия (слева) и из оксида церия
  • Оксиды (по часовой стрелке, от центрального верхнего) празеодима, церия, лантана, неодима, самария, гадолиния
  • 50px
  • 50px
  • 50px
  • Диаграмма, показывающая мировое производство РЗЭ, а также их экспорт, добычу и потребление в Китае
  • 50px

Лантаноиды         
(от Лантан и греч. е́idos - образ, вид)

лантаниды, семейство из 14 химических элементов с атомным номером от 58 до 71, расположенных в 6-м периоде системы Менделеева вслед за лантаном (табл. 1). Л. и сходные с ними элементы Скандий, Иттрий и лантан образуют группу редкоземельных элементов (в литературе её обозначают сокращённо РЗЭ). Такое название объясняется тем, что все эти элементы встречаются редко и дают тугоплавкие, нерастворимые в воде окислы, по старинной терминологии, - "земли". Редкоземельные элементы входят в побочную подгруппу III группы периодической системы.

По химическим свойствам Л. весьма сходны между собой, что объясняется строением электронных оболочек их атомов: по мере увеличения заряда ядра структура двух внешних электронных оболочек не меняется, т.к. происходит заполнение электронами 3-й снаружи оболочки - глубоколежащего 4f-уровня. Максимально возможное число электронов на f-уровне равно 14, что определяет число элементов семейства Л. (см. также Актиноиды, Атом, Периодическая система элементов Д. И. Менделеева). Л. подразделяются на 2 подгруппы: цериевую, включающую церий Се, празеодим Pr, неодим Nd, прометий Pm, самарий Sm, европий Eu, и иттриевую, включающую гадолиний Gd, тербий Tb, диспрозий Dy, гольмий Но, эрбий Ег, тулий Tm, иттербий Yb, лютеций Lu. Это деление обусловлено периодичностью изменения некоторых свойств внутри семейства Л.; названия подгрупп возникли исторически.

Историческая справка. В 1788 в шведском селении Иттербю был найден минерал иттербит (позднее переименованный в гадолинит). В нём Ю. Гадолин обнаружил в 1794 новую "землю", названную иттриевой. В 1803 И. Я. Берцелиус и В. Гизингер (1766-1852) и независимо от них М. Клапрот (1743-1817) в "тяжёлом камне из Бастноса" открыли цериевую "землю" (названную по малой планете Церере). Первоначально обе эти "земли" считались окисями неизвестных прежде металлов - иттрия и церия. В 1843 шведский химик К. Г. Мосандер (1797-1858) разложил иттриевую "землю" на собственно иттриевую, эрбиевую и тербиевую (все три названия - от Иттербю). Ж. Мариньяк (1878) выделил из эрбиевой "земли" ещё иттербиевую, а шведский химик П. Т. Клеве (1879) - гольмиевую (от Holmia - латинское название Стокгольма) и тулиевую (от Thúlë - древне-греческое название стран, лежащих на Крайнем Севере). В 1886 П. Э. Лекок де Буабодран разделил гольмиевую "землю" на собственно гольмиевую и диспрозиевую (от греческого dysprósitos - труднодоступный). В 1907 французский химик Ж. Урбен (1872-1938) нашёл в иттербиевой "земле" лютециевую (от Lutetia - латинское название Парижа). То же самое повторилось и с цериевой "землёй". В 1839-41 Мосандер разложил её на лантановую (от греческого lanthánö - скрываюсь), дидимовую (от греческого dídymos - близнец) и собственно цериевую "земли". Лекок де Буабодран, исследуя дидимовую "землю", полученную из уральского минерала самарскита [названного так в 1847 Генрихом Розе (1795-1864) в честь начальника штаба Корпуса горных инженеров В. Е. Самарского-Быховца (1803-70), от которого Розе получил значительное количество этого минерала], выделил из неё в 1879 самариевую "землю", а в 1886 - гадолиниевую (по имени Гадолина); она оказалась тождественной с "землёй", которую Мариньяк открыл в 1880 в самарските. В 1885 австрийский химик К. Ауэр фон Вельсбах (1858-1929) разделил дидимовую "землю" на празеодимовую (от греческого prásios - светло-зелёный) и неодимовую (от греческого néos - новый). В 1901 французский химик Э. Демарсе (1852-1904) разделил самариевую "землю" на собственно самариевую и европиевую.

Так, к первым годам 20 в. были открыты все Л., за исключением радиоактивного элемента с атомным номером 61, который в природе не встречается. Его получили только в 1947 американские физики Дж. Маринский, Л. Гленденин и Ч. Кориелл из осколков деления урана в ядерном реакторе и назвали прометием (См. Прометий) (от имени Прометея (См. Прометей)).

Хотя открытие Л. было завершено в начале 20 в., многие из них не были ни выделены в достаточно чистом состоянии, ни подробно изучены. Эффективные методы разделения, разработанные за последние 20 лет, позволяют получать и производить в чистом виде и соединения Л., и сами металлы.

Распространение в природе. Суммарное содержание лантана и Л. в земной коре составляет 1,78․10-2\% по массе, причём кларки у Л. с чётными атомными номерами больше, чем у соседних нечётных. Л. - характерные элементы земной коры; в породах мантии, в каменных метеоритах их мало. При магматических процессах Л. накапливаются в гранитоидах и особенно в щелочных породах. Известно 33 минерала церия и 9 лантана, остальные Л. входят как изоморфные примеси в кристаллическую решётку других минералов, преимущественно редкоземельных. Во многих минералах Л. изоморфно замещают Са, U, Tb и др. В биосфере Л. малоподвижны, с чем связано накопление их в россыпях. Содержание Л. в природных водах и организмах ничтожно. Их водная и биогенная миграция изучена плохо. Известны гидротермальные месторождения фосфатов, фторкарбонатов и фторидов Л., однако наибольшее промышленное значение имеют комплексные месторождения, связанные со щелочными магматическими породами (например, нефелиновые сиениты Кольского полуострова) и карбонатитами, а также месторождения осадочных фосфоритов, кора выветривания щелочных пород, прибрежно-морские и аллювиальные россыпи ксенотима и монацита.

Физические свойства. Л. - металлы серебристо-белого цвета (некоторые слегка желтоваты, например Pr и Nd). Кристаллическая структура большинства Л. - гексагональная плотноупакованная. Исключение составляют γ-Ce и α-Yb (кубическая гранецентрированная), Sm (ромбоэдрическая), Eu - кубическая объёмноцентрированная. То обстоятельство, что при переходе от Се к Lu число электронов на двух внешних оболочках, как правило, не меняется, а положительный заряд ядра постепенно возрастает, вызывает более сильное притяжение электронов к ядру и приводит к так называемому лантаноидному сжатию; у нейтральных атомов Л. и ионов одинаковой валентности при увеличении атомного номера радиусы несколько уменьшаются. Температуры плавления у элементов подгруппы церия значительно ниже, чем у элементов подгруппы иттрия.

Л. высокой чистоты пластичны и легко поддаются деформации (ковке, прокатке). Мехапические свойства сильно зависят от содержания примесей, особенно кислорода, серы, азота и углерода. Значения предела прочности и модуля упругости металлов иттриевой подгруппы (за исключением Yb) выше, чем для цериевой. Все Л., за исключением La и Lu, обладают при температурах выше комнатной сильным парамагнетизмом, причиной которого является наличие у этих элементов нескомпенсированных в 4f-подоболочках спиновых и орбитальных магнитных моментов. В области низких температур большинство Л. цериевой подгруппы (Nd, Pr, Sm) находится в антиферромагнитном состоянии, а Л. иттриевой подгруппы (Tb, Dy, Но, Er и Tm) при очень низких температурах - в ферримагнитном состоянии, а при более высоких температурах переходят в т. н. геликоидальное антиферромагнитное состояние. Gd при всех температурах ниже 293 К (т. е. до точки Кюри) находится в ферромагнитном состоянии (см. Магнитная структура).

Металлы Tb, Dy, Но, Er и Tm обладают большими величинами намагниченности насыщения, огромными значениями энергии магнитной анизотропии и магнитострикции, что позволяет на основе этих металлов создавать магнитные материалы (сплавы, ферриты, халькогениды и др.) с уникальными свойствами. a-La становится сверхпроводником при 4,9 К, β-La при 5,85 К; для других Л. сверхпроводимость не обнаружена.

Химические свойства. Л. отличаются высокой химической активностью. При нагревании они реагируют с водородом, углеродом, азотом, фосфором, углеводородами, окисью и двуокисью углерода; разлагают воду, растворяются в соляной, серной и азотной кислотах; выше 180-200°С Л. быстро окисляются на воздухе. Для всех Л. характерна валентность 3. Некоторые Л. проявляют, кроме того, валентность 4 или 2.

Окислы Л. и лантана тугоплавки. Гидроокиси R (OH)3 имеют основной характер и нерастворимы в щелочах. Хлориды, сульфаты и нитраты трёхвалентных Л. растворимы в воде, и кристаллизуются большей частью в виде кристаллогидратов различного состава. Фториды, оксалаты, фосфаты, карбонаты и ферроцианиды малорастворимы в воде и разбавленных минеральных кислотах. Трёхзарядные катионы Ce, Gd, Tb, Yb, Lu бесцветны, Pm, Eu, Er имеют розовый цвет, Sm, Dy, Но - жёлтый, Pr и Tm - зелёный, Nd - фиолетово-красный.

Большинство простых солей Л. склонно к образованию двойных солей с солями щелочных металлов, аммония, магния. Л. дают комплексные соединения с многими органическими веществами. Среди них важное значение имеют комплексы, образуемые с лимонной кислотой и рядом аминополиуксусных кислот: нитрилотриуксусной, этилендиаминтетрауксусной кислотой и др. "комплексонами". Эти соединения используются в процессах разделения Л.

Табл. 1. - Атомный номер, атомная масса и некоторые другие свойства элементов семейства лантаноидов

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Название | Сим | Атом | Атомная | Электронная | Ва | Ион | Энергия | Магнитные | Содержание |

| | вол | ный | масса | структура | лент | ный | ионизации, | моменты | в земной |

| | | но | | | ность | радиус | эв | 3- | коре, \% по |

| | | мер | | | | | | валентных | массе |

| | | | | | | | | ионов в | |

| | | | | | | | | магнетонах | |

| | | | | | | | | Бора * | |

| | |--------------------------------------------------------------------------------| |-----------------------------------------|

| | | 4f | 5s | 5p | 5d | 6s |-----------------------------------| |-----------------------------------------|

|-------------------------------------------------------------------------| | | | |------------------ | | |

| Лантан | La | 57 | 138,9055 | - | 2 | 6 | 1 | 2 | 3 | 1,061 | 36,2 | 0 | 2,9·10-3 |

| Церий | Ce | 58 | 140,12 | 2 | 2 | 6 | - | 2 | 3,4 | 1,034 | 37,2 | 2,51 | 7·10-3 |

| Празеодим | Pr | 59 | 140,9077 | 3 | 2 | 6 | - | 2 | 3,4 | 1,013 | 37,5 | 3,6 | 9·10-4 |

| Неодим | Nd | 60 | 144,24 | 4 | 2 | 6 | - | 2 | 3 | 0,955 | 37,8 | 3,61 | 3,7·10-3 |

| Прометий | Pm | 61 | (145)** | 5 | 2 | 6 | - | 2 | 3 | 0,979 | 38,3 | - | - |

| Самарий | Sm | 62 | 150,4 | 6 | 2 | 6 | - | 2 | 2,3 | 0,964 | 38,2 | 1,54 | 8·10-4 |

| Европий | Eu | 63 | 151,96 | 7 | 2 | 6 | - | 2 | 2,3 | 0,950 | 38,8 | 3,62 | 1,3·10-4 |

| Гадолиний | Gd | 64 | 157,25 | 7 | 2 | 6 | 1 | 2 | 3 | 0,938 | 38,6 | 7,84 | 8·10-4 |

| Тербий | Tb | 65 | 158,9254 | 9 | 2 | 6 | - | 2 | 3,4 | 0,923 | 39,4 | 9,76 | 4,3·10-4 |

| Диспрозий | Dy | 66 | 162,50 | 10 | 2 | 6 | - | 2 | 3(4) | 0,908 | 39,5 | 10,59 | 5·10-4 |

| Гольмий | HLu | 671 | 164,9304 | 11 | 2 | 6 | - | 2 | 3 | 0,894 | 40,0 | 10,50 | 1,7·10-4 |

| Эрбий | Er | 68 | 167,26 | 12 | 2 | 6 | - | 2 | 3 | 0,881 | 40,2 | 9,53 | 3,3·10-4 |

| Тулий | Tm | 69 | 168,9342 | 13 | 2 | 6 | - | 2 | 3(2) | 0,869 | 40,3 | 7,2 | 2,7·10-5 |

| Иттербий | Yb | 70 | 173,04 | 14 | 2 | 6 | - | 2 | 2,3 | 0,858 | 40,8 | 4,6 | 3,3·10-5 |

| Лютеций | Lu | 71 | 174,97 | 14 | 2 | 6 | 1 | 2 | 3 | 0,848 | 41,0 | 0 | 8·10-5 |

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* По измерениям парамагнитной восприимчивости. ** Массовое число наиболее долго живущего изотопа 145Pm.

Табл. 2. - Физические свойства лантана, лантаноидов, а также иттрия и скандия

Примечание. Структура, плотность и ряд других свойств приведены для модификацин, устойчивой при комнатной температуре. 1 кгс/мм2≈10 Мн/м2.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Металл | Плотность | t пл, °С | t кип, °С | Удельное объёмное | Сечение | Работа | Модуль |

| | (рентге | | | электрическое | захвата | выхода | упругости, |

| | новская), | | | Сопротивление (при | тепловых | электрона, | кгс/мм2 |

| | г/см | | | 25°С), ом·см·106 | нейтронов, σ | эв | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| α(La) | 6,17 | 920 | 3470 | 56,8 | 8,9 | 3,33 | 3915 |

| γ-Ce | 6,77 | 795 | 3470 | 75,3 | 0,70 | 2,84 | 3058 |

| α-Pr | 6,78 | 935 | 3130 | 68,0 | 11,2 | 2,7 | 3595 |

| α-Nd | 7,01 | 1024 | 3030 | 64,3 | 44 | 3,3 | 3860 |

| α-Sm | 7,54 | 1072 | 1900 | 88 | 6500 | 3,2 | 3480 |

| Eu | 5,26 | 826 | 1440 | 81,3 | 4500 | 2,54 | - |

| α-Gd | 7,89 | 1312 | 3000 | 140,5 | 44000 | 3,07 | 5730 |

| α-Tb | 8,27 | 1356 | 2800 | - | 44 | 3,09 | 5864 |

| Dy | 8,53 | 1407 | 2600 | 56 | 1100 | 3,09 | 6433 |

| Ho | 8,80 | 1461 | 2600 | 87 | 64 | 3,09 | 6850 |

| Er | 9,05 | 1497 | 2900 | 107 | 166 | 3,12 | 7474 |

| Tm | 9,33 | 1545 | 1730 | 79 | 118 | 3,12 | - |

| α-Yb | 6,98 | 824 | 1430 | 27 | 36 | 2,59 | 1815 |

| Lu | 9,84 | 1652 | 3330 | 79 | 108 | 3,14 | - |

| α-Sc | 2,99 | 1539 | 2730 | - | 13 | 3,23 | - |

| Y | 4,48 | 1509 | 2930 | 69 ±3 | 1,38 | 3,07 | 6700 |

| | | | | | | | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Получение. Основными источниками получения РЗЭ цериевой группы служат минералы монацит (фосфат РЗЭ и тория), бастнезит (фторкарбонат РЗЭ) и лопарит (сложный титанониобат натрия, кальция и РЗЭ); гл. источники РЗЭ группы иттрия - эвксенит, фергюсонит, ксенотим (иттропаризит) и гадолинит. Для извлечения РЗЭ монацитовые и бастнезитовые концентраты разлагают концентрированной серной кислотой при нагревании до 200°С с последующим выщелачиванием массы водой. Из сернокислых растворов первоначально выделяют торий, а затем осаждают РЗЭ в виде оксалатов, двойных сульфатов или др. соединений. Для разложения монацитовых концентратов используют также обработку растворами щёлочи, растворяя образующуюся при этом смесь гидроокисей в соляной или азотной кислоте. Бастнезитовые концентраты обжигают при 400-800°С с целью частичного или полного разложения минерала, сопровождающегося выделением CO2. Продукт обжига обрабатывают азотной кислотой. Из раствора осаждают РЗЭв виде фторидов или двойных сульфатов или извлекают экстракцией трибутилфосфатом. Сложное сырьё типа лопарита хлорируют в присутствии угля при 700-800° С. Летучие хлориды титана, ниобия и тантала удаляются с газами. В печи остаётся сплав хлоридов РЗЭ. Хлориды растворяют в воде, выделяя затем оксалаты РЗЭ. Эвксенит также рекомендуется перерабатывать методом хлорирования.

Методы разделения Л. основаны на небольших различиях в свойствах их соединений. Ранее для этой цели использовали дробную кристаллизацию солей (например, двойных нитратов и др.), дробное осаждение (гидроокисей, сульфатов, оксалатов и др.). В настоящее время основными являются экстракционные методы разделения, в которых используется различие коэффициентов распределения между водным раствором и органическим растворителем. Эти методы в сочетании с ионообменной хроматографией обеспечивают получение всех Л. высокой степени чистоты. В схемах разделения, кроме того, используют способность некоторых Л. к окислению до четырёхвалентного состояния (применяется для отделения Ce) или восстановлению до двухвалентного (Sm, Eu, Yb).

Для получения металлов применяют металлотермию или электролиз. Металлотермический метод основан на восстановлении безводных хлоридов или фторидов чистым кальцием. Процесс ведут в стальных бомбах, футерованных окисью кальция, или в тиглях из тантала в атмосфере чистого аргона. Этим способом могут быть получены все Л., кроме Sm, Eu и Yb. Последние можно восстановить из их окислов лантаном с последующей дистилляцией образующихся металлов.

Все Л. можно получить электролизом их соединений в солевых расплавах. Металлы подгруппы Ce выделяют электролизом безводных хлоридов в расплавах KCl + CaCl2 или KCl + NaCI. В случае металлов иттриевой подгруппы (более тугоплавких) электролиз ведут с жидким катодом из кадмия или цинка, которые затем отгоняют в вакууме. Электролитические металлы менее чисты, чем металлотермические.

Области применения. Л. (в виде металлов, сплавов и химических соединений) применяют в различных отраслях техники. Присадки Л. (главным образом Ce или его сплава с La) улучшают структуру, механические свойства, коррозионную устойчивость и жаропрочность стали, чугуна, магниевых, алюминиевых и др. сплавов. Добавки окислов различных Л. сообщают стеклу особые физические свойства и окраску. Двуокись церия CeO2 используют для полировки оптического стекла. Окислы Л. применяют для окраски фарфора, глазурей и эмалей. Церий или сплав Л. цериевой группы ("мишметалл") входит в состав нераспыляющихся поглотителей газов (геттеров) в электровакуумных приборах. Бориды некоторых Л. идут на изготовление катодов мощных электронных приборов. В СВЧ электронике и вычислительной технике используют редкоземельные ферриты-гранаты и ортоферриты, а в радиоэлектронике и микроэлектронике - редкоземельные сплавы (типа SmCo5), из которых изготовляют постоянные магниты рекордной энергии (см. Магнит постоянный). Л. входят в состав кристаллов для Лазеров (добавки соединений Л. в кристаллы CaF2 и др. солей); в атомной технике используют Л. с высоким сечением захвата тепловых нейтронов (Gd, Sm, Eu) для защиты от излучений и управления работой реакторов. В химической и лёгкой промышленности соединения Л. служат для изготовления лаков и красок, светящихся составов (люминофоров (См. Люминофоры)), катализаторов, фотореагентов. Важное применение нашли некоторые радиоактивные изотопы Л. Так, изотоп прометия (147Pm) применяют для изготовления микробатарей; изотоп тулия (170Tm) - в портативных рентгеновских установках медицинского назначения. В сельском хозяйстве соединения Л. применяют в качестве инсектицидов и микроудобрений. Этим перечнем далеко не исчерпываются области использования Л.

Лит.: Серебренников В. В., Химия редкоземельных элементов, т. 1-2, Томск, 1959-61; Зеликман А. Н., Металлургия редкоземельных металлов тория и урана, М., 1961; Спеддинг Ф.-Х., Даан А.-Х. [сост.], Редкоземельные металлы, пер. с англ., М., 1965; Трифонов Д. Н., Проблема редких земель, М., 1962; Сплавы редкоземельных металлов, М., 1962; Белов К. П., Редкоземельные магнитные материалы. Сб. памяти академика Л. В. Кипренского, М., 1972.

А. Н. Зеликман,

ЛАНТАНОИДЫ         
ЛАНТАНИДЫ, ов, ед. лантаноид, лантанид, а, м., хим.
Четырнадцать химических элементов, следующих в периодической системе Менделеева за ланта-ном и образующих, вместе с ним, иттрием и скандием, группу т. наз. редкоземельных элементов, ко-торые в природе всегда встречаются совместно.
ЛАНТАНОИДЫ         
(лантаниды) , семейство из 14 химических элементов (металлов) с атомными номерами 58-71. В периодической системе Менделеева следуют за лантаном. Очень сходны по химическим и физическим свойствам, что объясняется близостью строения электронных оболочек. Входят в группу редкоземельных элементов.

Wikipedia

Лантаноиды

Лантано́иды (лантани́ды) — семейство, состоящее из 15 химических элементов III группы 6-го периода периодической таблицы — металлов, с атомными номерами 57—71 (от лантана до лютеция). Все представители семейства имеют стабильные изотопы, кроме прометия. Название происходит от слова на древнегреческом языке λανθάνειν („скрытый“).

Скандий, иттрий и лантаноиды относятся к группе редкоземельных элементов (сокр. РЗЭ) и часто рассматриваются в этом контексте, однако распространенность отдельных элементов показывает, что редкими они не являются. В научных материалах для обозначения лантаноидов применяют вышеуказанный термин, включая в него иттрий и скандий, или по отдельности.

Запись Ln используется для указания на все или некоторые металлы, ионы, степени окисления, при записи химических формул и пр.

У всех лантаноидов, начиная с церия и заканчивая иттербием, заполняется 4f-подоболочка; у лантана 4f-электронов нет, а у лютеция — 14. Неспаренные 4f-электроны наделяют некоторые металлы различными ценными магнитными, спектроскопическими и люминесцентными свойствами. Более того, поскольку эти электроны хорошо экранированы внешними подоболочками (5s и 5p), спектральные характеристики сохраняются при добавлении лигандов. Все лантаноиды образуют катионы Ln3+ (некоторые ещё и Ln2+, Ln4+), ионный радиус которых постоянно уменьшается при увеличении атомного номера, — этот феномен известен как лантаноидное сжатие (то же самое проявляется у актиноидов). Непрерывно понижается осно́вность элементов от лантана до лютеция, что обуславливает различие в растворимости солей и в устойчивости их комплексных соединений.

Химическая связь с лантаноидами имеет почти всегда ионный характер. Лантаноиды — «тяжелые» акцепторы и имеют значительное сходство по своим свойствам с донором атомов — кислородом, из-за чего наиболее вероятными биологическими лигандами для них являются карбоксильные и фосфатные группы. Координационные числа для них могут быть от 6 до 12 (8—9 преимущественно в биологических системах).

Публикация работы норвежским геохимиком Виктором Гольдшмидтом, в которой впервые был употреблен термин лантаноиды, произошла в 1925 г. (аналогично было дано название актиноидам в 1937 г.).

Beispiele aus Textkorpus für Лантаноиды
1. РЕДКОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ - ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ ПОБОЧНОЙ ПОДГРУППЫ III ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ: СКАНДИЙ, ИТТРИЙ, ЛАНТАН И ЛАНТАНОИДЫ.
2. Таковы "олигархи- лантаноиды", или просто rare russians, как назвала их одна американская газета.
3. На первый взгляд это некий реестр полезных ископаемых, которые призвана добывать их новоиспеченная корпорация "Таблица-М". Бериллий, разные лантаноиды и прочая.
4. У нас серьезные запасы практически по всем редкоземельным элементам". Редкоземельные элементы - это группа из 17 элементов, включающая лантан, скандий, иттрий и лантаноиды.
Was ist Лантан<font color="red">о</font>иды - Definition